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ABSTRACT

The effects of time-varying turbulent viscosity on horizontal currents in the

ocean surface boundary layer are considered using a simple theoretical model

that can be solved analytically. This model reproduces major aspects of the

near-surface ocean diurnal cycle in velocity and shear, while retaining direct

parallels to the steady-state Ekman solution. The parameter dependence of

the solution is explored qualitatively, and quantitative measures of the low-

frequency rectification of velocity and shear are derived. Results demonstrate

that time-variability in eddy viscosity leads to significant changes to the time-

averaged velocity and shear fields, with important implications for the in-

terpretation of observations, and modeling of the near-surface ocean. These

findings mirror those of more complete numerical modeling studies, suggest-

ing that some of the rectification mechanisms active in those studies may be

independent of the details of the boundary layer turbulence.
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1. Introduction26

The daily transit of the sun causes a daily cycle in surface heat flux that is a principal forc-27

ing of upper ocean variability. This diurnal cycle in surface heat flux leads to a diurnal cycle in28

temperature, stratification, and near-surface mixing (Smyth 1854; Stommel et al. 1969; Brainerd29

and Gregg 1993). The effects of these changes have been the subject of widespread study in30

the oceanographic literature, and beyond the purely physical implications, a host of bio-physical31

interactions on the diurnal scale have been identified (McCreary et al. 2001; Kawai and Wada32

2007). The effects of the ocean diurnal cycle have also been studied extensively from the atmo-33

spheric perspective, as diurnal sea-surface temperature variability is critical to atmospheric bound-34

ary layer moisture content and convection, which respond non-linearly to temperature (Chen and35

Houze 1997; Clayson and Chen 2002; Dai and Trenberth 2004). The ability of the diurnal cycle36

in surface heat flux to modify low-frequency ocean temperature variability, a process termed rec-37

tification, has also been studied in the context of models, where it is shown that diurnal variability38

modifies the mean state on intraseasonal and longer timescales (Shinoda 2005; Danabasoglu et al.39

2006; Bernie et al. 2007, 2008).40

While the ocean thermodynamic response has been the subject of much work, the dynamic re-41

sponse remains less well understood. Observations have established that diurnal variability in42

stratification can serve to inhibit turbulent vertical momentum flux, causing the near-surface con-43

vergence of wind-driven momentum that leads to the acceleration of a downwind diurnal jet (Price44

et al. 1986). These jets are highly sheared, lowering the flow Richardson number to allow for45

the development of shear instabilities that deepen the mixed layer before the surface heat flux has46

changed sign, suggesting the dynamics of the ocean response are intertwined with the thermody-47

namic response (Smyth et al. 2013; Wenegrat and McPhaden 2015). Diurnal variability of mixing48
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has also been implicated in departures of time-averaged velocity fields from the predictions of49

classic Ekman theory (Price and Sundermeyer 1999), although the observational evidence alone50

has not been conclusive in this regards (Lewis and Belcher 2004; Rascle and Ardhuin 2009).51

Much of the theoretical work on the dynamics of the ocean diurnal cycle has focused on the use52

of slab layer models, which while useful in their simplicity, by construction do not offer any insight53

into the vertical structure of the flow. Further, observations suggest that Ekman theory provides54

a more consistent description of subinertial variability than slab layer models do (Davis et al.55

1981; Weller and Plueddemann 1996; Elipot and Gille 2009; Kim et al. 2014), and hence utilizing56

slab layer physics to understand rectification effects may not be appropriate. Thus, despite the57

recognized importance of the diurnal cycle, questions remain about the dynamical response to58

diurnal forcing, in particular regarding the possible routes to dynamical rectification.59

Important work on this topic was undertaken by McWilliams and Huckle (2006), and60

McWilliams et al. (2009), in the context of idealized numerical models. They showed that transient61

winds, surface buoyancy fluxes, and interior eddy fluxes result in rectification to the time-mean62

flow, attributed principally to modifications of the turbulent boundary layer depth and nonlineari-63

ties in the parameterized eddy viscosity (McWilliams and Huckle 2006; McWilliams et al. 2009).64

These findings are significant contributions to our understanding of dynamical rectification ef-65

fects, particularly in their ability to elucidate the terms controlling changes in turbulent mixing66

under different forcing regimes. However, as is often the case, the greater physical realism en-67

abled by a numerical model comes at the expense of additional complexity, and thus the parameter68

dependence and underlying physics are not as clearly illuminated as with theoretical approaches.69

Here we take a simpler approach, situated in complexity between analytic slab layer models and70

more realistic numerical models, and consider a periodic solution for the time-dependent Ekman71

layer (section 2). The eddy viscosity is treated as an external parameter, allowed to vary sinu-72
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soidally in time to approximate the known time-variability of turbulent mixing. This approach73

excludes any feedbacks between the wind-driven shear and the eddy viscosity, which is at best a74

crude first-order approximation (cf. McWilliams et al. 2009). However, the ability of the result-75

ing model to reproduce major aspects of the diurnal cycle in the near-surface ocean, as well its76

analytic tractability and possibility for insight into the underlying physical processes, particularly77

dynamical rectification, suggest it is a worthwhile exercise (section 3). In this respect, aspects78

of this work are similar to approaches used extensively in the study of the dynamics of low-level79

jets in the atmospheric boundary layer (Buajitti and Blackadar 1957; Singh et al. 1993; Tan and80

Farahani 1998; Zhang and Tan 2002), which to our knowledge have not yet been applied to the81

oceanographic problem.82

2. Theory83

We consider a linearized model of time-dependent horizontal flow, written using complex nota-84

tion as~u = u+ iv. The horizontal momentum equations are thus given by,85

~ut + i f~u =− 1
ρ

∇p+(Aν(z, t)~uz)z, (1)

with subscript t, and z, denoting differentiation with respect to time and the vertical coordinate,86

respectively. The eddy viscosity is denoted as Aν , and the density by ρ . It is assumed that the87

horizontal pressure gradient, ∇p, is independent of z, allowing separation into geostrophic and88

ageostrophic components, although we caution that baroclinic pressure gradients can be expected89

to significantly modify ageostrophic flows in the real ocean (Wenegrat and McPhaden 2016). The90

focus of this work is on the wind-driven flow, hence for the remainder we set ∇p = 0. We thus91

seek a solution to,92

~ut + i f~u = (Aν(z, t)~uz)z. (2)
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Transforming ~u = e−i f t~w reduces (2) to the one-dimensional heat equation with a coefficient that93

varies in both time and space,94

~wt = (Aν(z, t)~wz)z . (3)

Similar equations arise in the study of a variety of physical phenomenon, including non-Newtonian95

fluids (Balmforth and Craster 2001), diffusion in porous materials such as concrete (Mangat and96

Molloy 1994), and heat conduction in radioactive materials (Cannon 1984). For vertically uniform97

Aν , with arbitrary time dependence, it is possible to find a unique transformation of the time co-98

ordinate such that the solution can be written as a convolution between a transfer function and the99

time-varying surface wind stress (cf. Cannon 1984, 13.1.1-13.1.8). An example integral solution100

for an impulsively started steady wind stress,~τ , was given by Csanady and Shaw (1980),101

~u(z, t) =
~τ

ρ

∫ t

0

e−i f (t−η)√
πQ(η)

e−
z2

4Q(η) dη , (4)
102

Q(y) =
∫ t

t−y
Aν(T )dT. (5)

This solution was considered further, and extended to time-varying wind stress, in Wenegrat103

(2015), where it was found that monochromatic periodic time-variability in Aν introduces a com-104

plex modulation of the ocean velocity field at all frequencies. Here we take advantage of the105

existence of an oscillatory steady-state solution for the case of steady wind stress, that was evident106

in this earlier work (Wenegrat 2015), to provide a simple time-periodic solution for the case of107

steady-wind forcing and periodically varying Aν(z, t).108

We thus seek solutions of (2), subject to the following conditions,109

~u(z, t) =~u(z, t +
2π

ω
), (6a)

~uz(0, t) =
~τw

ρAν(0, t)
, (6b)

~u→ 0, z→−∞. (6c)
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Equation (6a) expresses the periodic-time boundary condition, with frequency ω . For the mo-110

tivating reasons given in section 1, we will identify this with the diurnal frequency, although111

the solution is valid generally for any ω . The surface boundary condition, (6b), is the standard112

shear-stress boundary condition where the wind stress is assumed constant in time, and the eddy113

viscosity is allowed to be a function of both time and space, Aν(z, t). The results discussed here114

are not sensitive to the particular bottom boundary condition, hence for simplicity we use, (6c),115

the standard Ekman bottom boundary condition. The derivation given can easily be applied to116

alternate boundary conditions.117

Aν(z, t) is assumed to be a known parameter, and we require that it be separable in time and118

space, Aν(z, t) = A(z)K(t). The dimensional vertical structure, A(z), can take any form that satis-119

fies the requirements of a Wentzel-Kramers-Brillouin-Jeffreys approximation (WKBJ, Bender and120

Orszag 1978), discussed below. However, we require that the time dependence take a particular121

form (Buajitti and Blackadar 1957),122

K(t) = 1+δcos(ωt), (7)

with δ ∈ [0,1), determining the strength of the periodic cycle of mixing. These mathematically ex-123

pedient requirements on Aν are not expected to accurately reflect the diurnal cycle of near-surface124

mixing, which remains an active area of observational work. Notably, parameterizations based on125

similarity theory with time varying boundary layer depth, such as the K-Profile Parameterization126

(KPP, Large et al. 1994), result in Aν where space-time dependence is not formally separable,127

discussed further in Appendix A.128

However, the idealized form of Aν we use here can be justified in part based on observations of129

the diurnal cycle of near-surface Aν which suggests that a sinusoidal time dependence is a reason-130

able first approximation (Wenegrat and McPhaden 2015). An example composite diurnal cycle,131
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estimated indirectly from ∼ 3 months of moored observations of wind-stress and near-surface ve-132

locity, following the method given in Wenegrat et al. (2014), is shown in figure 1, demonstrating133

the essentially sinusoidal time-dependence. Further support for this idealized time-dependence of134

Aν comes from a posteriori comparisons of the theory with more complete numerical models (sec-135

tion 3a, and Appendix A). Note also that the periodic time-variability in (7) introduces no change136

to the diurnally averaged Aν , which facilitates comparison to the steady (δ = 0) solution.137

We can rewrite equation (3) as,138

~wt(z, t) = K(t)[A(z)~w(z, t)z]z. (8)

Transforming the time coordinate, such that ζ = t +δ/ωsin(ωt), gives,139

~wζ = [A(z)~wz]z. (9)

In the new coordinate system the time periodic condition, (6a), can be written as, ~w(z,ζ + 2π

ω
) =140

~w(z,ζ )ei f 2π

ω (Zhang and Tan 2002), which is true of,141

~w(z,ζ ) = ~W
∞

∑
n=−∞

~wn(z)ei( f+nω)ζ . (10)

Substituting (10) into (9) gives a series of ordinary differential equations,142

[A(z)(~wn)z]z− i( f +nω)~wn = 0, (11)

which are equivalent to those studied by Zhang and Tan (2002).143

Each of the n-equations defined by equation (11) are straightforward to solve numerically, or, for144

additional insight into the dynamics, the solutions can be approximated using the WKBJ method145

(Grisogono 1995), which assumes,146

wn ∝ e
1

εn (S0+εnS1+ε2
n S2...). (12)
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Non-dimensionalizing in the standard manner for the Ekman balance (e.g. Vallis 2006, section147

2.12.1) with a modified rotational frequency of f +nω gives,148

Ekn
[
Â(z)(ŵn)ẑẑ + Â(z)ẑŵẑ

]
− iŵ = 0, (13)

where the hat notation indicates non-dimensional quantities, Ekn =
A0

( f+nω)D2 is the mode Ekman149

number, and A0 is a representative scale value of Aν . We identify D with the depth scale over which150

A(z) varies, as per the discussion in Wenegrat and McPhaden (2016). Ekn thus characterizes the151

ratio of the depth scale of the nth mode boundary layer to the depth scale over which A(z) varies.152

Using (12) in (13) gives εn ∼ Ek
1
2
n , and the WKBJ balance equations,153

S0 =
√

i
∫ 0

z
Â(Z)−

1
2 dZ, (14)

154

S1 =−
1
4

log Â(z). (15)

Use of the WKBJ approximation requires that,155

Ek
1
2
n S1

S0
� 1, Ek

1
2
n → 0, (16)

156

Ek
1
2
n S2� 1, Ek

1
2
n → 0, (17)

which physically can be understood as requiring slow variation of Aν relative to the boundary layer157

thickness of the nth mode. The constraint this places on the validity of the WKBJ approximation158

will be strongest for the n = 0 mode, as higher modes become rapidly surface trapped. A specific159

case where this WKBJ expansion is formally incorrect is the case of f = ±nω , where mode ∓n160

will have Ekn→ ∞. However, these modes are zeros of the Bessel functions used in the solutions161

below, so do not contribute appreciably to the total solution, discussed in more detail in Appendix162

B.163

To simplify the analysis, we consider only simple profiles of A(z) which stay sufficiently large164

so as to not violate (16), which precludes the direct application of this approximation to many165
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common forms of parameterized Aν (O’Brien 1970; Large et al. 1994). If desired, this require-166

ment can be removed by patching an appropriate inner solution as in Wenegrat and McPhaden167

(2016). However, as discussed below, many of the results emphasized here are independent of the168

particular form of A(v).169

The solution for an arbitrary mode after application of the bottom boundary condition is thus,170

wn(z) =CnA(z)−
1
4 e−(1+i)

∫ 0
z h−1

Ekn
(Z)dZ, (18)

such that hEkn defines the mode’s depth dependent Ekman depth, hEkn(z) =
√

2A(z)/( f +nω).171

The surface boundary condition, (6b), can be considered by returning to the series expansion172

(10), in terms of wz(z,ζ ),173

∞

∑
n=−∞

Cn

√
2iχn(0)hEk0(0)

A(0)
1
4 hEkn(0)

e[i( f+nω)ζ ] =
ei f t(ζ )

K(t(ζ ))
, (19)

where we have set ~W =~τwhEk0(0)(A(0)ρ)
−1, and,174

χn(z) = 1−
√
−2i
8

A(z)z

A(z)
hEkn(z). (20)

Transforming back to the original time coordinate, writing equation (7) as K(t) = 1+δ/2(eiωt +175

e−iωt), and dividing equation (19) through by the right-hand side gives,176

∞

∑
n=−∞

Cn

√
2iχn(0)hEk0(0)

A(0)
1
4 hEkn(0)[

einωt+iδ ( f
ω
+n)sin(ωt)+

δ

2
ei(n+1)ωt+iδ ( f

ω
+n)sin(ωt)+

δ

2
ei(n−1)ωt+iδ ( f

ω
+n)sin(ωt)

]
= 1 (21)

Note that if integrated in time each of the exponential terms takes the form of a Bessel function of177

the first kind (Temme 1996; Zhang and Tan 2002), thus,178

∞

∑
n=−∞

(−1)nCn

√
2iχn(0)hEk0(0)

A(0)
1
4 hEkn(0)[

Jn(δ (
f
ω

+n))− δ

2
Jn+1(δ (

f
ω

+n))− δ

2
Jn−1(δ (

f
ω

+n))
]
= 1, (22)
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where Jn denotes the nth Bessel function of the first kind (Temme 1996). The surface boundary179

condition is therefore satisfied if,180

Cn = (−1)n√−2iJn(δ (
f
ω

+n))
A(0)

1
4 hEkn(0)

2χn(0)hEk0(0)
. (23)

For simplicity in presentation we assume that A(z) does not vary significantly at z = 0 relative181

to the mode Ekman depth, ie. χn(0)∼ 1, although we retain this factor in subsequent calculations.182

The full solution is therefore given by,183

~u(z, t) =
~τw

ρ
√

f A(0)
e−i π

4

∞

∑
n=−∞

(−1)n
(

f
f +nω

)1/2

Jn (γn)︸ ︷︷ ︸
I

Ωn(z)︸ ︷︷ ︸
II

ei(nωt+γnsin(ωt))︸ ︷︷ ︸
III

 , (24a)

where184

Ωn(z) =
(

A(0)
A(z)

) 1
4

e−(1+i)
∫ 0

z h−1
Ekn

(Z)dZ, (24b)

γn = δ (
f
ω

+n). (24c)

Note that only the vertical structure functions (24b) are approximate, and in the case that Aν is185

vertically uniform this solution is exact.186

The term outside the summation defines the standard Ekman velocity scale, as arises in the187

steady-state problem. This amplitude term then multiplies an infinite series of oscillating vertical188

modes, each with vertical structure determined by the boundary layer ordinary differential equation189

(11). Term II (equation 24b) defines the vertical structure of the individual modes, each of which is190

a solution to a steady-state Ekman problem with a modified rotational frequency of f +nω . Thus,191

higher modes are progressively more surface trapped, with boundary layer depth scale hEkn . The192

extent of the vertical trapping of higher modes can be noted by considering that for the diurnal193

period considered here, mode n = 2 has a vertical depth scale less than that of a traditional Ekman194

layer at latitude 90◦. It can be anticipated from this that, in the time-periodic problem, oscillating195

Aν leads to a shoaling of the mean flow relative to the constant Aν solution (section 3c).196
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The value of the full summation in equation (24a) at z = 0 is determined by the surface boundary197

condition, equation (6b), however, for a given value of δ some modes will be excited more than198

others. Term I of (24a) thus can be considered as determining how efficiently the wind stress199

projects onto each mode, with larger values of δ leading to more significant excitation of higher200

modes (figure 2). The ratio f/ω in γ determines the symmetry of modes that are excited, with201

f/ω → 0 leading to a symmetric excitation of positive and negative modes, whereas larger values202

of f/ω are skewed towards positive modes (figure 2). When δ = 0, J0(0) = 1 and Jn(0) = 0 for203

n 6= 0, such that only the zeroth Bessel function is excited, and the steady state Ekman solution is204

recovered.205

The time-dependence in (24a) is a complex modulated oscillation (figure 3). Mathematically206

the time-dependence of each mode takes the form of a frequency-modulated signal, oscillating at207

frequency ω , with carrier frequency nω . This similarity can be exploited to rewrite (24a) with a208

simpler time-dependence, at the expense of a more complex expression for the mode amplitude209

and depth dependence,210

~u(z, t) =
~τw

ρ
√

f A(0)
e−i π

4

∞

∑
l=−∞

[
∞

∑
n=−∞

(−1)n
(

f
f +nω

)1/2

Jn (γn)Jl−n (γn)Ωn(z)

]
eilωt . (25)

3. Discussion of Solution211

In this section several pertinent aspects of the solution (24a) will be explored, including a quan-212

titative formulation of the rectification of velocity and shear in the time-averaged solution.213

a. Qualitative Solution Characteristics214

Figure 4 shows an example solution hodograph, where it assumed that Aν is elevated between215

1800−0600 hours, with the daily minimum occuring at 1200 hours. Velocity vectors trace closed216

contours over a 24 hour period, the time average of which is shown (heavy black), and which217
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can be compared to the steady-state Ekman solution (dashed black). Differences between these218

lines represent rectification of the diurnal variability in Aν to the low-frequency velocity field.219

Understanding and quantifying these rectification effects is the focus of section 3c below.220

Further insight into the solution comes from considering the solution in the time-depth plane.221

Figure 5 shows an example solution for a mid-latitude Ekman layer forced by a constant zonal222

wind stress. In the early morning hours Aν is high, and the Ekman layer is at its deepest. As Aν223

decreases towards its mid-day minimum the Ekman layer begins to shoal, most clearly evident in224

the shoaling of the zero zonal velocity line from z∼−1hEk0 to z∼−0.5hEk0 . A surface intensified225

diurnal jet develops (Price et al. 1986), associated with a high shear near surface layer. Below this226

high shear region, weak anticyclonic oscillations, with upward propagating phase, begin. In the227

near-surface ocean, near-inertial variability with upward propagating phase is often attributed to228

inertial waves with downward energy propagation. However the one-dimensional nature of the229

solution considered here precludes the existence of internal waves. Instead these features should230

be interpreted as inertial oscillations, with phase propagation determined by the diurnal cycle in231

viscosity, as discussed further below.232

The primary zonal momentum balance throughout the diurnal evolution is between the Coriolis233

acceleration,− f v, and the turbulent momentum flux convergence, (Aνuz)z, consistent with Ekman234

layer dynamics (figure 6). Near-the surface there is an alternating acceleration and deceleration235

of the flow on either side of the diurnal jet maximum, necessary to maintain the classic Ekman236

transport as the Ekman depth shoals and deepens. Deeper in the layer there are upward propa-237

gating signals in acceleration that are balanced largely by the Coriolis acceleration, a signature of238

inertial oscillations. These features can thus be interpreted as inertial oscillations initiated by the239

loss of Ekman balance caused by the decreasing mid-day Aν . In this manner they are similar to240

the inertial oscillations observed in simple models of the nocturnal low-level jet in the atmospheric241
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boundary layer, where it is found that a layer which abruptly transitions from viscid to inviscid242

dynamics, representing the change between daytime and nighttime dynamics, causes inertial os-243

cillations around the equilibrium solution (Blackadar 1957; Van de Wiel et al. 2010). The model244

considered here is not completely inviscid at depth, but, by analogy with atmospheric low level245

jets, leads to inertial oscillations which progressively shoal, following the shoaling Ekman layer.246

Figure 7 compares a more realistic simulation from a 1D model forced by a diurnal cycle in247

surface buoyancy fluxes (Appendix A), utilizing the KPP turbulence parameterization (Large et al.248

1994). The right panels show the time-periodic theoretical solution, forced by the same surface249

wind stress, using values of Aν diagnosed from the numerical model output. The boundary value250

problems, equation (11), are solved numerically for simplicity and accuracy, rather than using251

the WKBJ approximation (see Wenegrat and McPhaden 2016, for a discussion of the use of the252

WKBJ approximation for Aν(z) based on similarity theory). Major features are well reproduced,253

including the near-surface diurnal jet, mid depth minima in zonal velocity, descending shear layers,254

suppressed nighttime shear, and enhancement of shear near the base of the turbulent boundary255

layer. Other features which are not well reproduced are the stronger inertial oscillations below the256

boundary layer evident in the numerical model, and the deep evolution of the descending diurnal257

shear layers, whose descent slows in the numerical model relative to the theoretical prediction.258

These features are likely attributable in part to the lack of internal wave radiation in the 1D model259

configuration, and the space-time coupling of turbulent viscosity in KPP, respectively.260

b. Parameter Dependence261

In this section the parameter dependence of the solution (24a) will be explored to illustrate how262

the dynamics evolve across different regimes. The aspects of the solution unique to the diurnal263

cycle are evidently controlled by only two non-dimensional parameters, δ the strength of the264

14
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diurnal Aν cycle (equation (7)), and f/ω , the ratio between the local inertial frequency and the265

period of the eddy viscosity. Figure 8 illustrates the modification of boundary layer currents as266

δ is varied. Increasing δ increases the strength of the near-surface diurnal jet, as expected from267

the momentum balance discussed above. The strength, and location, of the inertial oscillations are268

also affected, with increasing δ leading to higher velocities, occurring closer to the surface and269

slightly later in the day. Similarly, with higher δ the enhanced near-surface shear persists later in270

the day, with evident subsurface maxima occurring several hours after the daily minimum in Aν .271

Figure 9 compares the effect of varying latitude, holding δ constant. At low latitudes an af-272

ternoon deepening of the sheared diurnal jet is evident, whereas the near-surface velocity and273

shear response becomes increasingly symmetric around the mid-day minimum in Aν as latitude274

increases. Deeper in the layer, z ∼ −4hEk0 , the diurnal modulation becomes increasingly pro-275

nounced as latitude increases. An upward propagating inertial oscillation is only clearly evident276

for 45◦, which may result from the inability of the periodic domain considered here to support277

inertial oscillations for latitudes < 30◦, where the inertial period exceeds 1 day. These effects278

are a consequence purely of varying latitude, while holding Aν fixed, and are therefore separate279

from those arising due to the horizontal component of the Coriolis force, which has been shown to280

modify boundary layer flow through altering the turbulence intensity and Reynolds stress (Zikanov281

et al. 2003; McWilliams and Huckle 2006).282

The diurnal evolution is also affected by the vertical structure of Aν , as illustrated by a compari-283

son between the solution for a vertically uniform Aν profile and a more realistic modified Gaussian284

profile (figure 10). The basic Ekman layer structure is stretched vertically according to the vertical285

structure of Aν , consistent with the interpretation of the integral in equation (24b) as a stretching of286

the vertical coordinate based on a vertically localized Ekman depth, as discussed in Wenegrat and287

McPhaden (2016). This leads to an enhancement of shear in the near-surface, as well as deeper in288
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the layer (z < −0.5hEk), for the modified Gaussian profile, which has reduced Aν in these depth289

ranges. Near z =−0.25hEk the isolines of velocity undergo more pronounced diurnal oscillations290

for the modified Gaussian profile, following the discussion in section 3a (figure 6), where it is291

suggested that inertial oscillations are generated following the shoaling of the Ekman layer, with292

vertical phase speed determined by ∂hEk(z)/∂ t, which for a given value of δ will be enhanced for293

larger values of Aν .294

c. Rectification295

Diurnal variability poses a challenge for the interpretation of observational data in terms of296

Ekman dynamics, as observations are frequently averaged in time in order to improve the signal-297

to-noise ratio and remove other forms of variability. Understanding the effect of time variability298

in Aν is thus critical to understanding time-averaged observations. Integrating the time-dependent299

solution (24a) over one diurnal cycle allows for comparison with the steady state solution (δ = 0),300

which can be used to examine the rectification effects of the diurnal cycle in mixing. We define a301

diurnal average of a quantity X(t) as,302

〈X〉= ω

2π

∫ 2π

ω

0
X(t)dt. (26)

The solution for velocity averaged over one diurnal cycle is given by,303

〈~u(z)〉=
~τw

ρ
√

f A(0)
e−i π

4

∞

∑
n=−∞

[(
f

f +nω

)1/2

J2
n (γn)Ωn(z)

]
. (27)

This takes on a particularly simple form at the surface where,304

〈~u(0)〉=
~τw

ρ
√

f A(0)
e−i π

4

∞

∑
n=−∞

[(
f

f +nω

)1/2

J2
n (γn)

]
. (28)

As discussed above, the projection coefficients decrease quickly with increasing mode number due305

to the rapid roll off of the squared Bessel functions, J2
n , and the dependence on ( f/( f +nω))1/2,306
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which is small for large absolute values of n. Thus, the time average solution for velocity will be307

dominated by the low modes.308

It is worth noting that the summation in equation (28) can have an imaginary component, arising309

from modes where ( f +nω)< 0. This can lead to a rotation of the surface velocity relative to the310

45◦ deflection predicted by steady-state Ekman theory, as shown in figure 11 as a function of the311

controlling parameters. Modifications to the direction of the surface current resulting from diurnal312

variability in Aν are generally quite small (< 10◦), in the downwind direction, and are hence313

not likely to be a significant factor in explaining discrepancies between observed surface current314

deflections and the predictions of classic Ekman theory (Huang 1979). This effect, arising solely315

from temporal variability in Aν , is however distinct from the changes in the direction of wind-316

driven flow that result from vertical structure in Aν , through equation (20), which can introduce317

significant changes in the direction of the ageostrophic flow.318

In a similar manner, the solution for surface shear averaged over one diurnal cycle can be found319

by vertically differentiating (27) and evaluating at z = 0,320

〈~uz(0)〉=
~τw

ρA(0)

∞

∑
n=−∞

Jn (γn)
2 . (29)

The higher modes will contribute more to the time average shear solution than they do to the321

time-averaged velocity, which will lead to larger rectification effects, emphasizing how surface322

velocity and shear will have different responses to a diurnal cycle in turbulent mixing, a result323

which is independent of the vertical structure of Aν . Further, the quantity in the summation is324

positive definite, hence rectification of diurnal variability will always enhance the mean surface325

shear relative to the steady-state Ekman problem, indicating a shoaling of the mean wind-driven326

flow.327
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A simple normalized measure of rectification, for a variable X , can be defined as,328

X̂R =
||〈X〉|− |X ||
|X |

, (30)

where angle brackets as before represent averaging over the diurnal cycle and the bar notation329

represents the steady state solution, assuming no time variability in Aν (δ = 0). This measure of330

rectification, (30), can then be applied to modeled and theoretical values of velocity and shear to331

assess the degree of rectification, giving,332

ûR|z=0 =

∣∣∣∣∣1− ∞

∑
n=−∞

[(
f

f +nω

)1/2

J2
n (γn)

]∣∣∣∣∣ , (31)

and,333

ûzR|z=0 =

∣∣∣∣∣1− ∞

∑
n=−∞

Jn (γn)
2

∣∣∣∣∣ , (32)

as shown in figure 12. Velocity rectification increases with increasing δ , with reduced rectification334

effects at low-latitudes, due in part to the enhanced total velocities in the Ekman solution as f → 0.335

Shear rectification is essentially latitude independent, which can be anticipated from (32), with a336

rapid increase at high δ and maximum values of ûzR > 5 as δ → 1. Thus while both velocity and337

shear are subject to rectification effects at all latitudes, the vertical structure of the time-averaged338

currents are more sensitive than their magnitude to time-variability in Aν .339

As a basic confirmation of this parameter dependence we compare the approximate theory to a340

numerical solution which does not impose the same constraints on periodicity. To do this we nu-341

merically solve (2), for an initially motionless ocean forced by a constant zonal wind stress, with a342

sinusoidally varying Aν , using a finite element Galerkin method (Skeel and Berzins 1990). Model343

integrations are carried out for 50 days, and averages are taken over the last half of the integration.344

Rectification in this idealized model can be seen to follow closely to the theoretical prediction345

(figure 13). This result holds regardless of latitude, suggesting the time-periodic domain is not346
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unduly influencing this result. Comparisons to a more complete numerical model are presented in347

Appendix A.348

One additional consequence of the changes in the time-mean solution introduced by time-349

variability in Aν is that the time-mean current no longer directly satisfies a steady state Ekman350

solution. It can thus be anticipated that in order to effectively fit a steady Ekman layer solution to351

the resulting currents it will be necessary to define an ‘effective’ Aν which may differ significantly352

from the mean of the time-varying values, a result familiar from previous work on Ekman layer353

rectification (McWilliams et al. 2009).354

Following McWilliams et al. (2009, equations 19-21) we define a complex, depth-dependent,355

effective eddy viscosity ~AvE f f that fits the time-averaged diurnal solution to a steady-state Ekman356

model. Namely,357

~AvE f f (z) =
∫ z
−∞

i f 〈~u〉dz
〈~u〉z

, (33)

such that,358

i f 〈~u〉=
(
~AvE f f (z)〈~u〉z

)
z
. (34)

This is shown for a diurnal cycle of Aν that is uniform in depth, which more clearly illustrates359

the modifications arising solely from diurnal variability (figure 14). The diurnal cycle of Aν leads360

to a reduction in near-surface |~AvE f f |, necessary to generate the enhanced near-surface shears. In361

all cases there is a mid-depth maximum of |~AvE f f | which moves deeper for increasing values of362

δ (off vertical scale for δ ≥ 0.75). Positive rotation angles of the effective viscosity indicates363

that the diurnally averaged stress is rotated cyclonically relative to the local mean shear, consis-364

tent with observations (Price and Sundermeyer 1999; Lenn and Chereskin 2009), and numerical365

models (McWilliams et al. 2009). These results can be compared to those from McWilliams et al.366
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(2009, their figure 20) which follow a similar overall structure, suggesting that the rectification367

mechanisms captured here are relevant to the more complete model physics considered therein.368

4. Summary369

In this work we have presented a simple theoretical model of the time-dependent Ekman layer370

with time-periodic eddy viscosity, intended as a basic approximation of the complex and interde-371

pendent processes governing the real evolution of the ocean surface boundary layer under time-372

varying forcing (section 2). This model has the advantage of simplicity, illustrating the basic373

physics of how time-variability in mixing changes the ocean response to a surface wind stress374

(section 3), and rectifies to the time-mean solution (section 3c). This simplicity comes at the375

trade-off of physical realism, particularly so in the constraints placed on the vertical and temporal376

structure of eddy viscosity, and that the turbulent viscosity is not allowed to evolve as a function377

of the resulting near-surface shear flows. The utility of this model can thus be viewed principally378

as a means of building physical insight and isolating processes which do not rely on these feed-379

back mechanisms to occur, as for instance is discussed in regards to the time-mean effective eddy380

viscosity found in section 3c. It can thus be considered similar to approaches adopted in the atmo-381

spheric sciences literature on the dynamics of nocturnal low-level jets (Blackadar 1957; Buajitti382

and Blackadar 1957; Sheih 1972).383

As guidance for the interpretation of observations, several conclusions can be drawn directly384

from the work presented here. The discussion of section 2 hints at the complexity of trying to385

infer the true Aν from measurements of interior velocities or boundary flux values (Wenegrat et al.386

2014), which in general will require solution of a non-linear equation (cf. Cannon 1984). This is387

the subject of a large body of literature on inversion techniques for the one-dimensional heat equa-388

tion which have not been systematically applied to the oceanic problem. The common approach389
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of fitting steady-state Ekman models to time-averaged fields can be expected to result in values of390

Aν , possibly complex, which depart significantly from the true values, complicating their physical391

interpretation and limiting their utility. This follows directly from changes in the mean verti-392

cal structure of the time-dependent solution, without requiring any feedback mechanism between393

shear flow and Aν , providing a simple explanation of observations (Price and Sundermeyer 1999;394

Lenn and Chereskin 2009), that differs somewhat in interpretation from previous investigations395

(McWilliams et al. 2009).396

Time-variability in Aν modifies both the velocity and vertical structure of ocean currents, and397

these changes rectify to the low-frequency flow. Velocity shear is more strongly rectified than ve-398

locity, and in both cases the magnitude of the rectification is only weakly dependent on latitude and399

dominated by the strength of the periodic variations in mixing. The Ekman solution is non-linearly400

dependent on Aν , and as demonstrated here, even periodic time variations in Aν , which introduce401

no change to the time-mean value, can greatly modify the mean boundary layer flow. Finally, we402

note that the upward propagating inertial oscillations which appear in our solution (figure 6) are403

forced by the diurnal cycle in viscosity, with vertical phase propagation speed determined by the404

rate at which the diffusive boundary layer shoals. The dynamics of these oscillations are exactly405

those implicated in the creation of atmospheric nocturnal jets (Van de Wiel et al. 2010), and im-406

portantly represent a physical mechanism by which a steady wind-stress forcing, in the presence407

of a time-varying solar heat flux, can excite near-inertial motions. However their presence in the408

oceanic boundary layer is less clearly documented, and hence deserves further investigation.409
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APPENDIX A416

Numerical Model417

In addition to the basic numerical solution discussed in section 3c, we utilize the MITgcm (Mar-418

shall et al. 1997), run in an idealized one-dimensional configuration with 2 m vertical resolution,419

spanning from z = −500 to z = 0. This resolution is sufficient to resolve the Ekman layer in420

all simulations used. The model is initiated from a state of rest with a weak, vertically uniform,421

temperature stratification, equivalent to N2 = 2×10−5 s−2 (Tz = 0.01◦Cm−1). A two-component422

surface buoyancy flux is imposed, consisting of incoming short-wave radiation which is absorbed423

using a Jerlov Type II absorption profile (Jerlov 1976), and an outgoing surface flux, held steady424

in time. The idealized diurnal cycle is thus a repeating cycle of a function given by,425

QSWR(t) =−Q0e−
(
(t̂−0.5)

0.25

)2

, (A1)

where Q0 = 900Wm−2, and t̂ ranges from 0− 1 daily. A constant outgoing surface heat flux is426

given by QLW = 125Wm−2. This particular profile leads to ∼ 11 hours of heat flux into the ocean427

(figure 15), which is an idealization taken to facilitate comparison between the model results and428

theory. These surface fluxes are used for all runs, which ignores variations in solar heat flux as a429

function of latitude and season that generally may result in variability at frequencies other than the430

diurnal. Also important to note is that this forcing profile leads to a net heat flux into the ocean,431

which in the 1D configuration utilized here can only lead to increasing temperature stratification432

at the base of the turbulent boundary layer, affecting the evolution of the turbulent boundary layer433
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depth. This can be accounted for by imposition of a restoring interior heat flux (as in McWilliams434

et al. 2009), however as we are here simply comparing the theory to the model based on diagnosed435

fields, and are not concerned with the detailed evolution of the turbulent boundary layer depth, we436

do not impose additional sources of interior cooling.437

Surface wind stress is steady and in the zonal direction. The magnitude of the surface wind438

stress is varied across runs, while the surface heat flux profile (figure 15) is not varied. This leads439

to variations in the strength of the diurnal mixing cycle between runs. Turbulent viscosity is pa-440

rameterized using KPP (Large et al. 1994), and calculated viscosities are output at every time step.441

The calculation of surface layer viscosities in KPP couples vertical structure and time-dependence,442

providing a more realistic model of near-surface turbulence than the simple dependence we require443

in section 2. All model integrations are performed for 100 days with a 20 minute integration time444

step.445

The model output is principally useful as a point of qualitative comparison, as in figure 7. How-446

ever, it is also possible to provide at least a basic assessment of the rectification effects discussed447

in section 2c. To do this we run the above model repeatedly, varying latitude from 5◦− 90◦ in448

5◦ increments, and wind stress τ = 0.1− 0.4Nm−2, holding the diurnal surface buoyancy flux449

profiles constant across runs. In KPP the coupling of space-time variability in Aν means there is450

no principled manner to effect the decomposition in order to estimate a steady-state solution for451

calculation of rectification values. Here we make the simple ad hoc assumption that the vertical452

structure can be taken as the time average Aν(z) over the last-half of the integration period. We453

then estimate δ by fitting a diurnally periodic sine function to the average Aν in the turbulent sur-454

face boundary layer. Using these two estimates it is possible to compare the estimated rectification455

to the theory.456
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Figure 16 shows the resulting estimate of the δ parameter for all model runs. There is a general457

increase in δ at low latitudes, emphasizing that this comparison is not an exhaustive exploration458

of the parameter space. Lower values of δ at any given latitude could be achieved by decreasing459

the diurnal variations in surface heat flux or increasing the surface wind stress. For KPP, the error460

in approximating Aν(z, t) as K(t)A(z) at a fixed depth z is a complex, non-monotonic, function of461

both δ and z/h, the ratio of z to the time mean turbulent boundary layer depth. However, some462

insight into the limits of this decomposition comes from writing Aν(z, t) = K(t)A(σ), where σ =463

−z/h(t) is the rescaled vertical coordinate with a time varying turbulent boundary layer depth h(t).464

Approximating this in a Taylor series gives Aν(z, t)≈ K(t)
(

A(z)+∂A/∂ t|t=t0(t− t0)
)

, where the465

bar notation indicates the time mean value, which occurs at time t0. The assumption of space466

and time separability can then be posed as an assumption that ∂A/∂ t|t=t0 � A(z), at all times, or467

equivalently, ∂A/∂σ |t=t0 ∂σ/∂ t|t=t0 � A(z). Thus at a given depth, both the local vertical slope468

of the eddy viscosity, as well as the time rate of change of the boundary layer depth, will affect the469

errors in approximating the eddy viscosity in KPP as separable in time and space.470

Despite these limitations, we find velocity rectification in the numerical model is reproduced471

remarkably well by the theory (figure 17), however shear rectification is greatly overestimated472

for values of δ > 0.8. Several reasons for this are suggested. First, the method of estimating δ473

is somewhat arbitrary, and for instance, the coupling of spatial structure and time-dependence in474

KPP means that near-surface Aν is generally subject to smaller diurnal fluctuations than deeper in475

the boundary layer. Shear rectification is particularly sensitive at high δ (figure 12), and hence may476

be particularly sensitive to incorrect estimates of this parameter. Secondly, higher vertical modes477

contribute more strongly to shear rectification than velocity rectification. These higher modes, with478

their small vertical scale and associated strong shear, may be damped in a more realistic turbulence479

closure such as KPP, where wind-driven shear feeds back into the determination of Aν . Finally,480
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for the surface forcing used here, the cases of high δ tend to occur at low latitudes (figure 16),481

associated with the deeper boundary layers in KPP generated in response to periodic buoyancy482

forcing at low latitudes (McWilliams et al. 2009), which results in increasingly non-sinusoidal483

time-variability of Aν . Hence, some of the departure of the model results from the theory may484

implicate the time-varying structure of Aν as departing from the basic theoretical assumptions.485

APPENDIX B486

Errors for f +nω → 0487

As discussed in section 2, application of the WKBJ approximation requires that Ekn =
A0

( f+nω)D2488

remains small, so as to not violate eqs. (16) and (17). In this appendix we assess the error con-489

tributed to the total solution from the modes where f →±nω , where mode∓n will have Ekn→∞.490

For the diurnal frequency considered here this can occur only for modes n =±1,2, at latitudes 30◦491

and 90◦, respectively.492

Each approximate solution for the vertical structure function, (24b), can be considered as Ωn =493

Ω̂n +En, where the hat notation indicates the exact solution, and En represents errors associated494

with the WKBJ approximation. For the WKBJ approximation En ∼ Ek1/2
n . Utilizing this in the495

full summation, the error that the nth mode contributes to the total solution, which we denote ETn ,496

will be proportional to,497

ETn ∼
(

f
f +nω

)1/2

Jn(γn)Ek1/2
n . (B1)

Utilizing the definition of Ekn, this can be rewritten as,498

ETn ∼
f

f +nω
Jn(γn)Ek1/2

0 . (B2)

Taking the limit of equation (B2) as f +nω → 0 gives, |ETn| ∼ |1/2Ek1/2
0 | if n =±1 and ETn ∼ 0499

if n = ±2. Thus, due to the behavior of the Bessel functions as their argument goes to zero,500
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the errors associated with these modes where the WKBJ approximation is formally invalid, are at501

worst O(Ek1/2
0 ), and ensuring the validity of the WKBJ approximation for n = 0 remains sufficient502

to ensure validity for all modes.503
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FIG. 3. Time dependence for the first±20 modes, assuming δ = 0.75, and latitude 45◦. Top, real components,

bottom: imaginary components.
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FIG. 5. Modeled diurnal cycle at 45◦N, for vertically uniform Aν , and δ = 0.75. Velocities are normalized by

τ/(ρ
√

f Aν0), and shear normalized by 2τ/(ρAν0), twice the surface shear for the constant viscosity solution.

Contours are non-linearly spaced to emphasize the deep variability.
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FIG. 6. Zonal momentum balance terms for the same case considered in figure 5, with values normalized by

τ/(ρhEk0).
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FIG. 7. Comparison of numerical model and theoretical solution for 45◦N, with τ = 0.1Nm−2. Parameters for

the theoretical solution are diagnosed from the numerical solution following the discussion in Appendix A, and

the boundary value problems, equation (11), are solved numerically rather than utilizing the WKBJ approximate

solution. Times of negative (red) and positive (blue) net surface buoyancy flux are indicated in each plot for

z > 0.
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FIG. 8. Effect of varying δ with parameters and normalization as given for figure 5.
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FIG. 9. Effect of varying latitude, with parameters and normalization as given for figure 5. Note both the

velocity and depth normalizations are a function of latitude.
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FIG. 10. Vertical structure in Aν modifies the diurnal cycle solutions. Right panels are for a modified Gaussian

Aν profile (Aν(z) = Aν0e−0.5(z/0.25hEk)+ε , orange line in left plot), center panels are for a vertically uniform Aν ,

taken as the mean value of the modified Gaussian profile between z = 0 and z = −hEk (blue line in left plot).

The vertical coordinate is normalized using hEk = 0.7
√

τ/ρ/ f , velocity is normalized by τ/(ρ
√

f Aν0), shear

is normalized by 4τ/(ρAν0), and δ = 0.75. Solutions to (11) were found numerically.
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FIG. 17. Comparison of inferred rectification in the numerical model against theoretical predictions for veloc-

ity (left) and shear (right). In each plot, colorscale gives the inferred δ , symbol shape gives the magnitude of the

surface wind-stress as shown in the legend, and the dashed line indicates the 1-1 line. Correlation coefficients

are shown above each plot.
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